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Abstract—For its stringent QoE requirement, augmented real-
ity (AR) has been widely hailed as a representative of ultra-high
bandwidth and ultra-low latency apps that will be enabled by
5G networks/edge clouds. Such a portrait of AR by the telco and
cloud industry raises an important research question — can 5G
enable latency-critical applications such as (edge-assisted) AR?
In this paper, we conduct to our knowledge the first in-depth
measurement study of whether 5G mmWave in combination with
in-network edge cloud can support the baseline edge-assisted
object detection. After we discover 5G mmWave is unlikely
to achieve the level of uplink network performance needed to
support a baseline edge-assisted object detection implementation
in the near future, we quantify the performance benefits in
retrofitting app-level optimizations developed in the pre-5G era
on top of baseline edge-assisted object detection, as well as
the performance benefits from hardware upgrade on the edge.
We find that these optimizations can significantly boost object
detection performance over both LTE and 5G mmWave; however,
the improvement with 5G mmWave over LTE is marginal, and
5G mmWave still fails to provide satisfactory performance in all
scenarios under consideration. Overall, we conclude that today’s
5G mmWave deployment is not a deciding factor in enabling
edge-assisted object detection.

I. INTRODUCTION

Augmented reality (AR) promises unprecedented interactive
and immersive experience to users by augmenting physical
objects in the real world with computer-generated perceptual
information. As such, a complete AR app needs to perform a
number of challenging tasks to understand and interact with
the physical environment, such as pose estimation, object
detection, and depth estimation [1]. Among them, object
detection is a fundamental building block of every immersive,
interactive AR app and at the same time the most challenging
one, since it relies on executing computationally heavy deep
neural network (DNN) models to achieve high accuracy. Since
executing such heavy DNN models on resource-constrained
head-mounts or mobile devices is extremely challenging, edge-
assisted AR, which offloads the object detection task to a
server in the edge cloud, has become the de facto approach
(e.g., [2], [3]).

To provide high-quality, interactive experience,1 edge-
assisted AR needs to perform object detection at low latency
and high frame rate, which places high uplink bandwidth
demand on the wireless network. It is because of this stringent

§Equal contribution
1Low-fidelity AR apps, e.g., Pokemon GO, have also been popular, but they

are over-simplified, without performing the essential tasks of understanding
the physical environment, such as object detection and pose/depth estimation.

network requirement that AR has been widely viewed as a
“killer” app for 5G [4], [5], e.g., in the AT&T/Microsoft
alliance as well as the Verizon/AWS alliance when showcasing
5G edge computing solutions [6], [7]. Such a perception
projected by the telco and cloud industry naturally raises an
important research question: can 5G enable latency-critical ap-
plications such as (edge-assisted) AR? The question, however,
cannot be easily answered without detailed measurement and
analysis in running real AR apps over production 5G networks.

Nonetheless, conducting a measurement study to answer
the above research question faces an intricate challenge in
the methodology. While eagerly anticipating the arrival of
5G networks, the research community had already intensively
studied edge-assisted object detection (e.g., [8], [3], [2], [9],
[10], [11]) and developed a host of sophisticated “application-
level” optimizations in trying to make edge-assisted AR
achieve acceptable performance under the mobile/wireless
networks available at the time. In particular, equipped with
these sophisticated app-level optimizations, these prior works
claimed feasibility of edge-assisted AR in various wireless
networks before 5G, including 4G LTE [3], [12], 802.11n [2],
and 802.11ac [11].

We argue that running an edge-assisted object detection im-
plementation equipped with such app-level optimizations over
a 5G mmWave network will not reveal any new insight other
than perhaps affirming that 5G mmWave provides no worse
performance than its predecessors. Instead, the right research
question to answer and hence measurement methodology to
use is to start with a baseline implementation of an edge-
assisted object detection implementation, one that would have
been naturally written by a developer starting from a local
(non-offloading) implementation. In particular, if the network
is sufficiently fast, i.e., not a constraint, the most natural way
of converting a local object detection implementation to an
edge-assisted version is to offload the DNN inference task of
every frame to the edge server; if the result comes back within
the same frame time, e.g., 33 ms under 30 FPS, the overall
behavior (e.g., accuracy) of the object detection task should
stay the same as if it were run on the mobile device.

Following the above methodology, in this paper, we first
conduct a measurement study of the performance of a rep-
resentative baseline object detection implementation that of-
floads frames captured by the camera at 30 FPS over the 5G
mmWave network of a leading mobile operator and associated
edge cloud (§III) to an edge GPU server running state-of-the-



art DNN-based object detection models [13], [14], [15]. Our
study involves various scenarios (static, walking, driving), user
orientations, and diverse video datasets. Our measurement
results show that, although today’s mmWave 5G improves the
performance of the AR app compared to 4G LTE, it still fails
to provide satisfactory accuracy. We estimate that 5G mmWave
needs to provide a stable uplink bandwidth of 273-1331 Mbps
(depending on the choice of GPU on the server) for the AR
app to achieve satisfactory performance in all scenarios, which
is unlikely to be achieved in the near future.

Since the network requirements for the AR app to achieve
satisfactory performance are unlikely to be met by 5G
mmWave networks in the near future, in the second part
of our study (§IV), we revisit two well-known app-level
optimizations developed in the pre-5G era, frame compres-
sion and local tracking, and explore whether 5G mmWave
combined with these app-level optimizations offers additional
benefits compared to its predecessors, e.g., LTE. We find that
these optimizations can significantly boost object detection
performance over both LTE and 5G mmWave. Nevertheless,
5G mmWave combined with these two optimizations still fails
to provide satisfactory accuracy in all the scenarios under
consideration except when the user is static.

Since the application-level optimizations cannot provide
satisfactory accuracy in most scenarios, in the third part of our
study (§V), we examine the effect of using faster (datacenter-
grade) GPUs. We find that the combination of faster GPUs
with the two app-level optimizations help both LTE and 5G
mmWave to achieve satisfactory accuracy in a variety of
scenarios. While 5G mmWave achieves satisfactory accuracy
in more scenarios than LTE, the improvement is marginal.
In addition, 5G mmWave still fails to provide satisfactory
accuracy in (the most challenging) driving scenario.

In summary, we conduct to our knowledge the first in-
depth measurement study of whether the combination of 5G
mmWave and edge cloud can support edge-assisted object
detection for mobile AR apps. Our results show that 5G
mmWave, although providing higher performance than LTE, is
not a deciding factor in enabling edge-assisted object detection
for mobile AR apps. In contrast, app-level optimizations
developed in the pre-5G era and server-side hardware upgrades
play more critical roles.

II. METHODOLOGY

In order to evaluate the performance of the edge-assisted
object detection app, one methodology is to directly capture
frames from the camera and run the app with the UE con-
nected to the 5G mmWave or LTE network. However, the
performance of an object detection app depends on a large
number of factors including the underlying network, type of
scenes captured by the camera, DNN model, GPU model, etc.
Hence, to enable reproducibility and isolate the impact of each
factor, we use trace-driven emulation with different network
traces and video datasets and replay the same network trace
for different video datasets, DNN models, and GPU models.
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Fig. 1. Workflow of the baseline edge-assisted object detection AR app.

TABLE I
MEAN AND STANDARD DEVIATION OF THE THROUGHPUT AND RTT,

UNDER EACH SCENARIO.

Throughput (Mbps) RTT (ms)
LTE 5G LTE 5G

Static toward 48.34 ± 3.87 319.54 ± 33.64 32.39 ± 2.33 14.24 ± 0.86
Static away 48.34 ± 3.87 198.21 ± 14.68 32.39 ± 2.33 14.68 ± 1.69

Walking 32.52 ± 6.76 164.07 ± 80.85 33.68 ± 2.52 14.76 ± 3.68
Driving 26.15 ± 8.33 64.02 ± 45.58 34.02 ± 5.58 22.72 ± 3.15

We confirmed that the trace-driven emulation results match
closely the results of the actual experiments.

A. The AR App

We developed a canonical object detection Android ap-
plication, which employs a best-effort offloading policy. Its
workflow is shown in Fig. 1. When a new camera frame
becomes available and no other frame is currently being
offloaded, the user equipment (UE) uploads the frame to the
edge server over the cellular network, and the server performs
DNN inference upon receiving the frame. If the offloading
result does not come back in the same frame slot, which is
common due to the frame transfer delay over the network and
the server DNN inference delay, the UE reuses the latest, albeit
stale, result returned by the server to mask the latency, and
treats it as the result for the current frame. Therefore, the end-
to-end offloading latency is critical to the performance of the
application, as the application will be able to use more recent
inference results when the latency is lower. Since we want
to evaluate whether 5G mmWave is fast enough to support
edge-assisted object detection without the need for application-
level optimizations, the app transfers raw frames between the
UE and the edge server. We evaluate the effectiveness of
retrofitting application-level optimizations developed pre-5G,
including frame compression and local tracking, in §IV.

B. Network Traces

We collected network traces in downtown Boston using a
Samsung S21 phone, which supports 2-CC uplink CA (the
state-of-the-art in commercial off-the-shelf UEs). Following
the same methodology as in [16], we used nuttcp with the de-
fault TCP congestion control, CUBIC, to generate backlogged
TCP uplink traffic to measure the uplink throughput, and the
ICMP-based ping utility to measure the network RTT at an
interval of 100 ms.

Table I shows the mean and standard deviation of the
measured throughput and RTT for each trace. We make



TABLE II
STATISTICS OF THE VIDEO DATASETS USED IN OUR STUDY. THE AVERAGE

OBJECT SIZE IS IN NUMBER OF PIXELS IN A 640X480 FRAME.

Dataset Number of
videos

Main obj.
category

Avg. # of obj.
per frame

Avg. obj.
size1

MOT17 6 Person 20.38 3254
Argoverse 24 Car 12.70 3919

1 Unit in square pixels.

the following observations: (1) Facing towards the BS, 5G
mmWave achieves the highest throughput of 319.54 Mbps (6x
higher than LTE). (2) The throughput of 5G mmWave drops
drastically in all other scenarios (when the user faces away
from the BS, walks, or is in a car), reaching as low as 64
Mbps (driving scenario). However, the phone still achieves
substantially higher throughput over 5G mmWave than over
LTE in all scenarios. (3) The RTT over 5G mmWave (14-23
ms) is substantially lower than over LTE (32-34 ms) over all
scenarios, but increases substantially under driving.

C. Video Datasets

In this study, we use two video datasets containing different
objects and captured under diverse scenarios, as shown in
Table II. The MOT17 dataset [17] is captured with stationary,
handheld, or car-mounted cameras, and the majority of objects
in the dataset are persons. On the other hand, Argoverse [18]
is a driving dataset captured with a camera mounted on top
of the car, and thus the field of view of this dataset mainly
consists of cars.2 Both datasets are accompanied by human-
labeled bounding boxes as the ground truth.

D. DNN Models

On the server side, we deployed three popular object
detection models: YOLOv5 [13], Faster R-CNN [14], and
EfficientDet-D4 [15]. As explained before, both factors – infer-
ence accuracy and inference latency – affect the performance
of the edge-assisted object detection application. We selected
each model and its variant (“Large” variant of YOLOv5, “D4”
variant of EfficientDet) such that the three models exhibit a
diverse spectrum of accuracy-runtime trade-offs.

Table III compares the accuracy and runtime of the three
DNN models. We use the most widely used object detection
accuracy metric — mean average precision (mAP) [19] — to
evaluate our object detection application. We use the Object
Detection Metrics [20] toolkit for mAP score calculation. We
observe that EfficientDet is the most accurate model on both
datasets, but also has the highest runtime. Faster-RCNN is gen-
erally the second-most accurate (except that it gives slightly
lower accuracy on the Argoverse dataset than YOLOv5), and
its runtime is between EfficientDet and YOLOv5. YOLOv5
has the shortest runtime, but it is also generally the least
accurate model.

2Ideally, handheld videos should be tested against static/walking network
traces and driving videos against driving network traces. We include all
combinations in our evaluation for comprehensiveness.

TABLE III
ACCURACY AND RUNTIME OF THE OBJECT DETECTION DNN MODELS

USED IN OUR STUDY.

mAP on
Argoverse

mAP on
MOT

Runtime
on 2080 Ti

Runtime
on A100

YOLOv5 (Large) 37.82 ± 16.84 50.37 ± 13.77 17.5 ms 15.5 ms
Faster R-CNN 38.45 ± 16.02 56.37 ± 10.11 59.0 ms 24.9 ms

EfficientDet (D4) 42.26 ± 17.50 59.54 ± 7.72 60.6 ms 38.8 ms

E. Criterion for Satisfactory Accuracy

Since our goal is to quantify the impact of the offloading
latency on the edge-assisted object detection application, we
use the offline mAP score of the most accurate object detection
model for each dataset as the reference (i.e., 42.26 for Argov-
erse, 59.54 for MOT), and consider the offloading performance
to be satisfactory if the mAP score of the application with
offloading is within 90% (a commonly used threshold [21],
[2]) of the reference. 3

F. Emulation Setup

We connect the UE and the server over 802.11ac, and
emulate the uplink bandwidth and latency obtained from our
5G mmWave or LTE traces using the tc tool at a 100 ms
granularity. We discard the first second of each trace to remove
the effect of TCP slow start.

Apart from the networking component, the rest of the end-
to-end edge-assisted object detection pipeline is implemented
and run on real systems. We implemented the edge-assisted
object detection application as an Android app and ran it on a
Samsung Galaxy Note20 Ultra 5G phone. We offload to two
servers equipped with different GPUs, one with a consumer-
grade NVIDIA GTX 2080 Ti GPU, and the other with a
datacenter-grade NVIDIA A100 GPU. For reproducibility, we
offload video frames from the two datasets described in §II-C
pre-stored on the phone, rather than frames obtained from the
camera. However, we still use Android camera’s native YUV
format (12 bits per pixel) for offloading. We chose 640x480 as
the offloading resolution, and each frame is 450 KB under the
chosen resolution and format. Following the same frame rate
as in the datasets, we make a new frame available every 33 ms
(30 FPS). We offload each video against each collected trace,
i.e., network scenario, and report the mAP score (average ±
standrard deviation) for each dataset-scenario combination.

III. EVALUATION WITH THE BASELINE AR APP

In this section, we evaluate the performance of the baseline
AR app described in §II-A over 5G mmWave and LTE. We
begin our study using the 2080 Ti GPU. We evaluate the
potential benefits from employing a more powerful GPU in
the following sections.

A. Evaluation Results

Table IV lists the end-to-end (E2E) latency and mAP scores
under different scenarios. In the case of 5G mmWave, different
scenarios have a very different impact on the application

3Translating the achieved mAP to user QoE can only be done via user
studies and is out of scope of this work.



TABLE IV
EVALUATION WITH 2080 TI GPU AND A SAMSUNG S21 PHONE. MAP

SCORES ARE MARKED IN BOLD IF THEY ARE WITHIN 90% OF THE
OFFLINE ACCURACY (42.26 FOR ARGOVERSE, 59.54 FOR MOT).

E2E latency mAP
Argoverse

mAP
MOT

LTE 5G LTE 5G LTE 5G

YOLOv5
Static toward 135.3 ± 7.8 46.9 ± 4.5 21.4 ± 12.3 33.6 ± 15.5 32.2 ± 13.4 47.2 ± 13.2
Static away 135.3 ± 7.8 55.0 ± 3.9 21.4 ± 12.3 33.2 ± 15.4 32.2 ± 13.4 46.7 ± 13.5

Walking 176.5 ± 37.2 69.9 ± 24.4 17.9 ± 12.1 30.2 ± 15.4 25.4 ± 11.3 42.8 ± 14.0
Driving 241.9 ± 79.4 162.6 ± 88.6 15.0 ± 12.1 20.9 ± 13.2 19.4 ± 11.1 29.8 ± 16.0

Faster-RCNN
Static toward 179.8 ± 10.6 89.5 ± 5.3 18.8 ± 11.3 28.3 ± 13.4 30.5 ± 13.7 46.4 ± 14.4
Static away 179.8 ± 10.6 97.2 ± 5.3 18.8 ± 11.3 27.2 ± 13.0 30.5 ± 13.7 44.7 ± 14.7

Walking 218.8 ± 38.0 113.9 ± 26.2 16.2 ± 11.0 24.6 ± 12.8 24.4 ± 12.8 39.1 ± 16.5
Driving 286.9 ± 80.6 214.3 ± 92.5 13.9 ± 10.9 17.8 ± 11.3 19.8 ± 12.9 28.6 ± 15.9

EfficientDet-d4
Static toward 179.4 ± 7.8 91.1 ± 4.5 20.3 ± 13.3 30.6 ± 14.9 32.2 ± 13.3 48.1 ± 12.1
Static away 179.4 ± 7.8 99.3 ± 3.9 20.3 ± 13.3 29.0 ± 14.5 32.2 ± 13.3 45.4 ± 12.8

Walking 221.5 ± 38.2 115.9 ± 26.1 17.3 ± 13.0 26.1 ± 14.4 25.5 ± 12.3 40.6 ± 13.9
Driving 289.8 ± 78.6 217.2 ± 92.4 14.8 ± 12.7 18.8 ± 12.9 20.2 ± 12.7 29.3 ± 15.5

performance. The app performs the best with both datasets and
all ML models when the user is facing towards the BS, but
the accuracy drops slightly if the user turns their back to the
BS, and drops drastically during walking or driving. For the
Argoverse dataset, the performance is the best with YOLOv5,
as the model has the lowest inference time and decent offline
accuracy (Table III). For the MOT dataset, the three DNN
models achieve similar accuracy.

Comparing the mAP scores over 5G mmWave vs. LTE, we
conclude that 5G mmWave indeed helps the app achieve better
performance, thanks to its higher throughput and lower RTT,
which reduces the E2E offloading latency by 1-2 frame times
(33-67 ms) when compared with LTE. However, neither 5G
mmWave nor LTE achieve satisfactory accuracy. Even under
ideal mmWave conditions (static, facing towards the BS), the
E2E offloading latency with 5G mmWave is 46.9 ms, 89.5 ms,
and 91.1 ms for the three models respectively, which translates
to 2, 3, and 3 frame times. As we show in Section VI, such
an E2E latency is too high to yield satisfactory accuracy.

B. What Contributes to the High E2E Latency?

We next analyze the breakdown of the E2E latency and its
contributing factors in Fig. reffig:e2e-breakdown. We observe
that: (1) With the YOLOv5 model, which has the lowest in-
ference time, the frame transmission accounts for the majority
of the E2E latency in all scenarios over both 5G mmWave
and LTE. With Faster R-CNN and EfficientDet, the increased
DNN inference time accounts for the majority of E2E latency
under static and walking scenarios over 5G mmWave. In all
other scenarios, i.e., driving scenario over 5G mmWave, and
in all scenarios over LTE, frame transfer still accounts for
the majority, due to the lower network throughput in these
scenarios. (2) The contribution of the network RTT to the E2E
latency is higher over LTE than over 5G mmWave, since the
former has much longer RTTs than the latter (Table I).

IV. THE EFFECT OF APP OPTIMIZATIONS

In this section, we retrofit the AR app with two application-
level optimizations, frame compression and local tracking,
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Fig. 2. E2E latency breakdown with the AR app.

which have been commonly used in the edge-assisted object
detection literature in the pre-5G era.

1) Compression: Since transmission time is a major con-
tributor to the E2E latency, which is critical to the application
performance, reducing the transmission time may result in
better application performance. While one way of reducing
the transmission time is to increase the network bandwidth,
reducing the frame size through compression is another possi-
ble direction. To measure the effect of compression, we utilize
the hardware H.264 encoder using Android MediaCodec, and
encode the frames before sending them to the edge server.
Accordingly, the server decodes the frames before feeding
them to the object detection model. One parameter that needs
to be decided in advance is the encoding bitrate, which
controls the tradeoff between the encoded frame size and the
frame quality loss (and consequently inference accuracy drop).
We evaluated the offline accuracy under different encoding
bitrates, and found that with an encoding rate of 12 Mbps
(which reduces the average frame size from 450 KB to about
50 KB), the offline accuracy is within 2% of that without
encoding. Thus, we use 12 Mbps as the default encoding
bitrate. It takes on average 6.3 ms to encode one frame on
the Samsung Note 20 phone.

Table V (left half) shows the E2E latency and object detec-
tion mAP with frame compression enabled, when offloading
to the 2080 Ti GPU from the Samsung S21 phone. We
observe that due to frame compression, the E2E offloading
latency is significantly reduced. For example, with the Faster
R-CNN model, compared to without the application-level
optimizations (Table IV), the E2E latency reduces by 9.8 ms
(from 89.5 ms to 79.7 ms) under the best 5G mmWave scenario
(static, facing towards the BS), and by 111.5 ms (from 214.3



TABLE V
THE EFFECT OF APPLICATION-LEVEL OPTIMIZATIONS WITH 2080 TI GPU AND A SAMSUNG S21 PHONE. MAP SCORES ARE MARKED IN BOLD IF THEY

ARE WITHIN 90% OF THE OFFLINE ACCURACY (42.26 FOR ARGOVERSE, 59.54 FOR MOT).

Frame Compression Frame Compression & Fast Tracking

E2E latency mAP
Argoverse

mAP
MOT E2E latency mAP

Argoverse
mAP
MOT

LTE 5G LTE 5G LTE 5G LTE 5G LTE 5G LTE 5G

YOLOv5
Static toward 66.6 ± 4.3 41.7 ± 2.9 31.1 ± 14.7 33.9 ± 15.3 43.9 ± 14.5 47.8 ± 13.2 85.1 ± 4.3 60.2 ± 2.9 35.9 ± 15.9 36.5 ± 16.2 49.3 ± 9.9 51.9 ± 9.5
Static away 66.6 ± 4.3 43.0 ± 3.1 31.1 ± 14.7 33.8 ± 15.3 43.9 ± 14.5 47.7 ± 13.3 85.1 ± 4.3 61.5 ± 3.1 35.9 ± 15.9 36.4 ± 16.1 49.3 ± 9.9 51.9 ± 9.3

Walking 72.7 ± 8.1 44.8 ± 6.1 29.3 ± 14.4 33.8 ± 15.5 41.9 ± 14.2 47.2 ± 12.8 91.2 ± 8.1 63.3 ± 6.1 35.5 ± 15.7 36.9 ± 16.1 48.4 ± 9.2 51.1 ± 8.9
Driving 81.6 ± 12.5 64.2 ± 15.7 28.2 ± 14.1 30.9 ± 15.1 40.1 ± 14.4 43.3 ± 14.5 100.1 ± 12.5 82.7 ± 15.7 35.2 ± 15.6 36.1 ± 15.9 47.5 ± 9.4 49.1 ± 9.8

Faster-RCNN
Static toward 108.3 ± 7.1 79.7 ± 4.0 24.5 ± 12.1 28.3 ± 13.2 39.7 ± 14.9 45.3 ± 14.2 126.8 ± 7.1 98.2 ± 4.0 33.6 ± 14.1 34.8 ± 14.6 49.3 ± 9.9 51.9 ± 9.5
Static away 108.3 ± 7.1 81.5 ± 4.3 24.5 ± 12.1 28.3 ± 13.2 39.7 ± 14.9 45.1 ± 14.4 126.8 ± 7.1 100.0 ± 4.3 33.6 ± 14.1 34.9 ± 14.7 49.3 ± 9.9 51.9 ± 9.3

Walking 111.4 ± 9.1 83.2 ± 7.1 24.0 ± 12.2 27.9 ± 13.5 38.3 ± 14.5 43.9 ± 14.0 129.9 ± 9.1 101.7 ± 7.1 33.1 ± 14.0 34.6 ± 14.6 48.4 ± 9.2 51.1 ± 8.9
Driving 121.4 ± 12.8 102.8 ± 16.4 23.0 ± 12.0 25.3 ± 12.8 36.6 ± 14.4 40.1 ± 15.0 139.9 ± 12.8 121.3 ± 16.4 32.6 ± 13.7 33.7 ± 14.3 47.5 ± 9.4 49.1 ± 9.8

EfficientDet-d4
Static toward 111.3 ± 3.2 85.5 ± 2.4 26.5 ± 13.7 30.7 ± 14.6 41.9 ± 13.1 48.4 ± 12.0 129.8 ± 3.2 104.0 ± 2.4 36.9 ± 15.6 38.7 ± 16.3 51.9 ± 7.9 55.6 ± 6.9
Static away 111.3 ± 3.2 86.6 ± 2.5 26.5 ± 13.7 30.8 ± 14.5 41.9 ± 13.1 48.4 ± 12.1 129.8 ± 3.2 104.0 ± 2.5 36.9 ± 15.6 38.8 ± 16.2 51.9 ± 7.9 55.5 ± 6.9

Walking 118.6 ± 8.1 90.1 ± 6.2 25.3 ± 13.9 29.5 ± 15.0 39.6 ± 13.7 45.6 ± 12.9 137.1 ± 8.1 108.6 ± 6.2 35.5 ± 15.2 37.6 ± 16.0 48.3 ± 8.4 52.8 ± 7.5
Driving 129.6 ± 12.2 110.8 ± 16.0 24.0 ± 13.9 26.4 ± 14.3 37.3 ± 13.7 40.8 ± 14.5 148.1 ± 12.2 129.3 ± 16.0 34.5 ± 15.0 35.8 ± 15.4 46.6 ± 9.0 49.2 ± 9.8
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Fig. 3. Local tracking adjusts the old bounding boxes of the previous frame
to future frames.

to 102.8 ms) under the worst 5G mmWave scenario (driving).
However, despite the significant reduction in E2E latency, the
app still fails to achieve satisfactory accuracy for both datasets
and all DNN models, under both 5G mmWave and LTE.

2) Local tracking: While a straightforward way of improv-
ing the performance is to reduce the E2E latency, an orthogo-
nal, complementary approach is to lower the performance drop
caused by long E2E latency, i.e., due to more frames having
to reuse the stale result from last offloaded frame. To this end,
there have been several works that utilize local tracking [2],
[3], which optimizes the bounding box locations in the stale
result for the current frame.

Several local tracking algorithms have been proposed in
academia and industry, e.g., [22], [23], [3]. We adapted the
tracker implementation from TensorFlow [22], which uses the
Lucas-Kanade method [24] to estimate the optical flows of
the extracted features between the previous and current frames
and adjusts the bounding boxes using the optical flows. When
the offloading result does not come back in the same frame
slot, the tracker on the UE performs local tracking from the
previous frame, which estimates the movement of each object,
and adjusts the old bounding boxes accordingly (Fig. 3). Upon
the arrival of a new result from the server, the tracker performs
local tracking between the offloaded frame and the current
frame, to adjust the received bounding boxes to the current
frame. On the Samsung Note 20 phone, the tracker takes on
average 7.3 ms to process each incoming camera frame, and
18.5 ms to process each server-returned result.

Table V (right half) shows the object detection accuracy
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Fig. 4. E2E breakdown of the AR app with application-level optimizations.

with both frame compression and local tracking enabled. We
observe that (1) the E2E offloading latency increases compared
to without local tracking, since local tracking requires an
additional 18.5 ms to process each server-returned result. We
include the tracker latency as part of E2E latency because
the returned result is useful only after the tracker finishes
processing it. (2) Local tracking improves the accuracy sig-
nificantly. For example, the accuracy with the MOT dataset
and the EfficientDet model over 5G mmWave improves from
48.4 to 55.6 under the best mmWave scenario (static, facing
towards the BS). Under the worst mmWave scenario (driving),
the mAP is also significantly improved from 40.8 to 49.2. The
app now achieves satisfactory (90% of the offline) accuracy
for both datasets under static scenarios, but not under walking
or driving scenarios.



TABLE VI
THE EFFECT OF BETTER GPU, WITH APPLICATION-LEVEL OPTIMIZATIONS
ENABLED. MAP SCORES ARE MARKED IN BOLD IF THEY ARE WITHIN 90%
OF THE OFFLINE ACCURACY (42.26 FOR ARGOVERSE, 59.54 FOR MOT).

E2E Latency mAP
Argoverse

mAP
MOT

LTE 5G LTE 5G LTE 5G

YOLOv5
Static toward 82.7 ± 5.0 57.8 ± 2.8 35.8±15.8 36.4±16.2 48.6±12.7 49.1±12.6
Static away 82.7 ± 5.0 59.2 ± 3.3 35.8±15.8 36.4±16.1 48.6±12.7 49.0±12.6

Walking 88.5 ± 7.8 60.8 ± 6.1 35.4±15.6 36.9±16.2 47.4±11.9 49.0±12.1
Driving 98.0 ± 12.9 81.1 ± 15.9 34.5±15.9 35.9±16.0 46.4±12.0 47.6±12.3

Faster-RCNN
Static toward 93.2 ± 5.3 67.6 ± 3.5 34.4±14.2 36.0±15.1 51.6±9.6 53.6±9.3
Static away 93.2 ± 5.3 68.9 ± 3.7 34.4±14.2 36.0±15.1 51.6±9.6 53.6±9.3

Walking 101.3 ± 9.1 74.5 ± 8.5 34.2±14.4 36.1±15.1 50.5±9.3 53.1±8.9
Driving 109.4 ± 13.4 92.7 ± 16.3 33.7±14.2 34.8±14.6 49.5±9.7 51.0±10.0

EfficientDet-d4
Static toward 108.2 ± 4.1 83.9 ± 2.8 37.8±15.9 38.8±16.2 53.7±7.6 56.4±7.0
Static away 108.2 ± 4.1 85.3 ± 3.1 37.8±15.9 38.7±16.2 53.7±7.6 56.0±7.2

Walking 116.1 ± 8.0 89.2 ± 6.5 36.9±15.7 38.5±16.3 51.6±7.8 54.5±7.8
Driving 125.5 ± 12.1 107.6 ± 15.5 36.2±15.6 37.3±15.9 49.4±8.5 51.9±9.0

Fig. 4 shows the E2E latency breakdown when both
application-level optimizations are enabled. We observe that
frame transmission time is significantly reduced, and thus is no
longer the main contributor to the E2E latency. For YOLOv5,
which has the lowest inference time, the network RTT, DNN
inference, and local tracking are all major contributors to the
E2E latency under static and walking 5G mmWave scenarios,
while the network RTT is the main contributing factor under
driving scenarios with mmWave, or with LTE. For Faster R-
CNN and EfficientDet, the main contributing factor is the
DNN inference.

In summary, the two optimizations together improve the
object detection performance significantly. With the reduced
frame size due to frame compression, RTT becomes a more
dominant factor than the frame transmission time (which is
determined by the bandwidth) for the E2E latency. Further,
using local tracking to adjust the stale bounding boxes accord-
ing to the latest frame, which reduces the impact of staleness,
significantly increases the accuracy. However, the app can
reach 90% of the offline accuracy only under static scenarios
over 5G mmWave with the EfficientDet model, while still
failing to achieve satisfactory accuracy in all other scenarios.

V. THE EFFECT OF BETTER HARDWARE

Since solely relying on application-layer optimizations fails
to provide satisfactory accuracy, we next explore the impact of
investing in better GPU servers. Edge service providers may
be incentivized to upgrade server GPUs if it helps to enable
5G apps such as edge-assisted AR for their customers. Paying
for a faster GPU reduces the DNN inference time on the edge
and potentially improves the accuracy.

Table VI shows the results with an A100 GPU. We observe
that: (1) 5G mmWave helps the app to achieve satisfactory
accuracy under static and walking scenarios on both datasets.
(2) With LTE, the app achieves satisfactory accuracy on the
MOT dataset under static scenarios, but not for the Argoverse
dataset. (3) Neither 5G mmWave nor LTE enables the app to
achieve satisfactory accuracy under driving scenarios.

TABLE VII
APPLICATION PERFORMANCE UNDER EMULATED FIXED E2E, WITH

FRAME COMPRESSION AND LOCAL TRACKING ENABLED. E2E IS
SPECIFIED IN NUMBER OF FRAME TIMES, WHERE ONE FRAME TIME IS 33
MS. MAP SCORES (%) ARE MARKED BOLD IF THEY ARE WITHIN 90% OF

THE OFFLINE ACCURACY (59.54 FOR MOT, 42.26 FOR ARGOVERSE).

E2E Latency 0–1 1–2 2–3 3–4 4–5 5–6

YOLOv5 MOT 50.4 48.8 47.3 45.0 43.0 40.1
Argoverse 37.8 36.3 35.1 34.0 33.0 31.7

Faster MOT 56.7 53.6 51.8 49.4 46.5 43.4
R-CNN Argoverse 38.5 36.1 34.8 33.1 31.8 30.5

EfficientDet MOT 59.5 57.4 55.8 52.6 49.6 45.6
Argoverse 42.3 40.0 39.0 37.7 36.0 34.3

In summary, higher-end GPUs can boost the performance
in borderline scenarios for both 5G mmWave and LTE. 5G
mmWave can help the AR app to achieve satisfactory perfor-
mance in more scenarios compared with LTE (although the
improvement is marginal), but it still fails to provide satisfac-
tory accuracy for both datasets under all scenarios. Moreover,
the choice of the DNN model is crucial; only EfficientDet (the
heaviest but most accurate model) can achieve satisfactory
accuracy.

VI. HOW FAR ARE WE FROM SUPPORTING EDGE-ASSISTED
OBJECT DETECTION FOR MOBILE AR?

To understand the network requirements for supporting
high-quality object detection, we obtain the relationship be-
tween E2E and the mAP score, by manually fixing the E2E la-
tency to constant values (by controlling the emulated network
conditions), and measuring the application performance under
each fixed E2E. Then, we calculate the required bandwidth
and RTT to achieve the needed E2E latency that the AR app
requires to achieve satisfactory performance.

A. With Application-level Optimizations

Table VII shows the mAP under the emulated, fixed E2E
(expressed in number of frame times), with local tracking
enabled. As the app uses the latest result that comes back
from the server (before the next frame becomes available) for
the current frame, the mAP scores are the same for E2Es with
the same slot (number of frame times). The app achieves the
offline accuracy when offloading results come back within one
frame time, while the performance drops with increasing E2E,
depending on the dataset.

The above offline analysis in Table VII helps us understand
the app performance. Take offloading to a 2080 Ti GPU
for example (Table V), with the EfficientDet model and 5G
mmWave, the app achieves an average E2E latency of 104.0
ms in the “static toward” scenario. Out of all the offloaded
results, 95.9% come back within 3 frame times, while the rest
return after 4 frame times (not shown in the table for brevity).
As a result, the mAP score (55.6) is between the third (55.8)
and the fourth columns (52.6) in Table VII.

An E2E latency of lower than 3 frame times (100.0 ms) is
required for the app to achieve 90% of the offline accuracy.
With the A100 GPU, in the static, facing towards the BS



TABLE VIII
APPLICATION PERFORMANCE UNDER EMULATED FIXED E2E, WITHOUT

FRAME COMPRESSION OR LOCAL TRACKING. E2E IS SPECIFIED IN
NUMBER OF FRAME TIMES, WHERE ONE FRAME TIME IS 33 MS. MAP
SCORES (%) ARE MARKED BOLD IF THEY ARE WITHIN 90% OF THE

OFFLINE ACCURACY (59.54 FOR MOT, 42.26 FOR ARGOVERSE).

E2E Latency 0–1 1–2 2–3 3–4 4–5 5–6

YOLOv5 MOT 50.4 47.1 40.8 34.9 29.9 25.6
Argoverse 37.8 33.6 27.8 23.3 19.9 17.4

Faster MOT 56.7 53.2 47.0 40.3 34.8 29.5
R-CNN Argoverse 38.4 34.0 28.2 24.0 20.6 18.1

EfficientDet MOT 59.5 55.8 48.6 42.1 36.3 31.6
Argoverse 42.3 37.4 30.7 26.4 22.7 19.9

scenario, we estimate the app can tolerate a throughput as
low as 31.44 Mbps (if keeping RTT the same), or with an
RTT as high as 29.19 ms (if keeping throughput the same),
which is already achievable by today’s 5G mmWave networks
(Table I) and therefore the app achieves satisfactory accuracy,
as we saw in Table VI. Similarly, the UE provides enough
network performance under static, facing away from the BS
scenarios, as well as walking scenarios. In the driving scenario,
it is estimated that a stable throughput of at least 31.44 Mbps,
or RTT of at most 29.19 ms is required. Although the average
throughput and RTT are 64.02 Mbps and 22.72 ms (Table I),
respectively, the throughput has a high standard deviation of
± 45.58 Mbps and thus does not enable the app to achieve
satisfactory accuracy.

B. Without Application-level Optimizations

Table VIII shows the accuracy under varying E2E latencies,
without application-level optimizations. Note that the accuracy
under the same E2E is higher compared to without compres-
sion (Table VII) since the frame does not go through lossy
compression. We observe that: (1) With YOLOv5, satisfactory
accuracy can never be achieved on any dataset, because
YOLOv5 has much lower offline accuracy than EfficientDet
(which was used to establish the 90% criterion), as shown in
Table III. (2) With Faster R-CNN, satisfactory accuracy can be
achieved as long as the E2E is within one frame time. (3) With
EfficientDet, satisfactory accuracy can be achieved if the E2E
latency is within two frame times for MOT, and one frame
time for Argoverse.

With the correct choice of DNN model (i.e., EfficientDet),
MOT and Argoverse need an E2E latency of 2 and 1 frame
times respectively to achieve satisfactory accuracy. For the
Argoverse dataset, it is impossible for the app to achieve
satisfactory accuracy regardless of the selection of server GPU,
as the inference time even with the A100 GPU (38.8 ms)
already exceeds one frame time (33.3 ms).

For the MOT dataset, with the 2080Ti GPU, we estimate
that optimizing either the RTT or throughput alone is not
enough to enable the AR app to achieve satisfactory accuracy.
If keeping the frame transmission time and RTT equally
weighted, the app needs an RTT of 3.42 ms and throughput
of 1331 Mbps to achieve E2E within 2 frame times and thus
satisfactory accuracy.

Using a faster GPU reduces the DNN inference time,
allowing for longer frame transmission and/or RTTs, and thus
lowering the network requirements. With the A100 GPU, we
estimate today’s UE can already achieve satisfactory accuracy
under static scenarios. In the walking scenario, we estimate the
UE needs to improve its throughput to 273.97 Mbps, or lower
its RTT to 5.96 ms. Similarly, in the driving scenario, the UE
can achieve satisfactory accuracy by achieving a throughput
higher than 694.98 Mbps, and can never achieve satisfactory
accuracy by lowering the RTT. Such network performance is
not achievable by today’s phones in the respective scenarios
(Table I).

Provisioning such high bandwidth or low RTT requires
redesigning the 5G architecture to provide on-demand more
bandwidth to uplink-oriented, bandwidth-intensive applica-
tions such as AR by leveraging cross-layer interfaces between
applications and the cellular stack (e.g., via O-RAN) or by
moving to even higher frequencies, above 100 GHz, which
are considered part of the upcoming 6G technology.

VII. RELATED WORK

5G measurement studies. There have been a limited number
of measurement studies on the performance of 5G [25], [26],
[27], [28], [16]. All these works (with the exception of [16])
focus on the downlink and are generic, covering topics such
as coverage, handovers, energy consumption, and throughput
prediction, in addition to performance. In contrast, our work
focuses on a specific latency-critical uplink app.
Cellular measurements targeting a specific application. The
majority of prior works on cellular measurements targeting
specific applications focus on downlink-oriented applications,
primarily video streaming [29], [26], web browsing [25], [26],
bulk download [30], and VR [31]. These measurement studies
are typically extensive over LTE, but limited over 5G. A
few recent works focus on uplink-oriented applications [28],
[32], [33]. The works in [32], [33] are the closest to ours,
studying the performance of a commercial multi-user AR app
over LTE and 5G mmWave, respectively. Commercial multi-
user AR apps do not perform object detection, and hence,
they have very different traffic patterns from the AR apps we
consider in this work. They generate traffic in the order of
only a few tens of Mbps and the main challenge they face is
the latency involved in synchronizing the real-world views of
multiple users in the cloud. In contrast, our work focuses on
edge-assisted object detection, which is both bandwidth- and
latency-sensitive.
Cellular-application co-optimization. There have been sev-
eral works on cellular-application co-optimization, targeting
both downlink-oriented [26], [34] and uplink-oriented appli-
cations [35], [36]. In the case of uplink-oriented applications,
Lee et al. [35] propose a deep learning-based uplink through-
put prediction framework for video telephony over LTE and
Ren et al. [36] propose a framework for edge-assisted multi-
user AR over 5G. These two apps have very different traffic
characteristics from object detection applications, which are
the focus of this work.



Optimizations for edge-assisted object detection. Several
works (e.g., [37], [8]) utilize compression to reduce the trans-
mitted frame size. Another way of performing compression is
to split the DNN model into two halves, run the first half on
the device, offload the intermediate representations (smaller
than input) to the edge server, and run the second half on
the server [11], [38]. However, none of these works considers
the real-time requirement (i.e., the result for the current frame
needs to be available in the current frame interval) during
their evaluation. Some works, e.g., [3], [2] use local tracking
to mask the offloading latency, but their evaluation is done
over LTE/Wi-Fi. A closely related topic is edge-assisted video
analytics, where camera-captured frames are offloaded to the
cloud server for queries like object detection [39], [21], [9].
However, unlike AR, these applications do not have stringent
latency requirements, and the proposed techniques result in
latency of at least several frame times at 30 FPS, and hence
are not applicable to the AR scenario.

VIII. CONCLUSION

In this paper, we conducted to our knowledge the first in-
depth measurement study that showed that 5G mmWave is not
a deciding factor in enabling edge-assisted object detection for
mobile AR apps. Adding the app-level optimizations devel-
oped pre-5G, such as frame compression and local tracking,
to offloading allows 5G mmWave to provide high object
detection accuracy, but such optimizations also help LTE; the
additional benefits from 5G mmWave are marginal. Without
such optimizations, 5G mmWave would need to provide a
stable 273 Mbps to 1.3 Gbps uplink bandwidth for the AR app
to achieve satisfactory performance, which is far from today’s
5G mmWave capabilities. In contrast, the combination of app-
level optimizations with better hardware on the server side
shows much more promise in enabling edge-assisted object
detection for high quality mobile AR even over LTE.
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